MACHINE VIBRATION STANDARDS: OK, GOOD, BETTER & BEST

Part 2 – Absolute, General Standards

Barry T. Cease
Cease Industrial Consulting
September 9th, 2011
Different Types Of Vibration Standards

1) ABSOLUTE, GENERAL (OK)

2) ABSOLUTE, MACHINE SPECIFIC (GOOD)

3) COMPARATIVE (BETTER)

4) HISTORICAL STANDARDS (BEST)
Absolute Vibration Standards, General

- These standards represent a starting point or rough gauge to apply to most machinery using an absolute vibration reference level by machine condition that is based on both experience & historical data across many industries and machine types. Some examples are as follows:

1) IRD 10816 Charts (Casing Measurements)
2) Bernhard Chart (Casing Measurements)
3) Vibration Institute Standards (Casing Measurements)
4) Update International Standards (Casing Measurements)
5) Blake Chart (Casing Measurements)
6) ISO 10816-1 Standard (Casing Measurements)
7) API 612 Standard (Shaft Displacement)
8) Dresser-Clark-Jackson Chart (Shaft Displacement)

- **PROS:** No prior machine history is required to perform a general assessment of a machine’s health.

- **CONS:** Fail to account for the vast differences between machine types, bearing types, stiffnesses, system mass, base types, machine speeds, loading, etc.
At or below 0.08 ips-pk is good for general machinery.

At or above 0.314 ips-pk is rough for general machinery.
IRD ABSOLUTE VIBRATION STANDARDS[^6] (ACCELERATION & VELOCITY)

• About 1 g’s-pk or below represents good operation for most machinery.

• About 3 to 4 g’s-pk represents the limit of good to fair operation for most machinery.
Velocity:
1) Below 0.20 ips-pk is considered good to fair.
2) Above 0.20 ips-pk is considered rough.

Acceleration:
1) Below 3 to 6 g’s-pk is considered good to fair.
2) Above 6 g’s-pk is considered rough.

Foundation Type: Suggestion is made to reduce measured levels by 40% to compensate for isolated or weak foundations.
Vibration Institute, General Standards[^8]

<table>
<thead>
<tr>
<th>Machine Condition</th>
<th>Overall Vibration, RMS Velocity (ips-rms)</th>
<th>Overall Vibration, Peak Velocity (ips-pk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptance of new or repaired equipment</td>
<td>< 0.08</td>
<td>< 0.16</td>
</tr>
<tr>
<td>Unrestricted operation – normal</td>
<td>< 0.12</td>
<td>< 0.24</td>
</tr>
<tr>
<td>Surveillance</td>
<td>0.12 – 0.28</td>
<td>0.24 – 0.7</td>
</tr>
<tr>
<td>Unsuitable for operation</td>
<td>> 0.28</td>
<td>> 0.7</td>
</tr>
</tbody>
</table>

Update International, General Standards[^9]

<table>
<thead>
<tr>
<th>Machine Condition</th>
<th>Overall or 1x RPM Vibration Level</th>
<th>Higher Frequency Vibration (Bearing Frequencies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dangerous</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>Very Bad</td>
<td>0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Bad</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Mildly Rough</td>
<td>0.2</td>
<td>0.07</td>
</tr>
<tr>
<td>Good, Acceptable</td>
<td>0.1</td>
<td>0.04</td>
</tr>
<tr>
<td>Very Good</td>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>Precision, Very Smooth</td>
<td>0.01-0.02</td>
<td>0.005</td>
</tr>
</tbody>
</table>
Velocity:
1) Below 0.06 ips-pk → No Fault.
2) Below 0.20 ips-pk → Minor Fault.
3) Above 0.20 ips-pk → Some Fault.
4) Above 0.63 ips-pk → Acute Fault.
5) Above 2 ips-pk → Danger.

Acceleration (Freq. Dependent):
1) Below 1 g’s-pk → No Fault.
2) Below 2-3 g’s-pk → Minor Fault.
3) Above 10 g’s-pk → Acute Fault to Danger.

Service Factor provides a way to adjust levels for machine criticality.
ISO General Standards (10816-1:1995)[10]

<table>
<thead>
<tr>
<th>RMS Vibration Velocity (mm/s)</th>
<th>RMS Vibration Velocity (ips-rms)</th>
<th>"Derived Peak" Vibration Velocity (ips-pk)</th>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
<th>Class 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.28</td>
<td>0.01</td>
<td>0.02</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>0.45</td>
<td>0.02</td>
<td>0.03</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>0.71</td>
<td>0.03</td>
<td>0.04</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>1.12</td>
<td>0.04</td>
<td>0.06</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>1.8</td>
<td>0.07</td>
<td>0.10</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>2.8</td>
<td>0.11</td>
<td>0.16</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>4.5</td>
<td>0.18</td>
<td>0.25</td>
<td>C</td>
<td>C</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>7.1</td>
<td>0.28</td>
<td>0.40</td>
<td>D</td>
<td>C</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>11.2</td>
<td>0.44</td>
<td>0.62</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>18</td>
<td>0.71</td>
<td>1.00</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>28</td>
<td>1.10</td>
<td>1.56</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>45</td>
<td>1.77</td>
<td>2.51</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

- **Zone A** - Newly commissioned machinery. Excellent Condition.
- **Zone B** - Good. Acceptable for unrestricted, long-term operation.
- **Zone C** - Unsatisfactory for long-term, continuous operation (alert level).
- **Zone D** - Bad. Sufficient severity to cause long-term damage to machine (alarm level).

Class 1 - Very small machinery or parts of machinery (20 HP or below).
Class 2 - Small machinery (20-100 HP) on rigid foundations.
Class 3 - Large machinery mounted on rigid & heavy foundations.
Class 4 - Large machinery mounted on relatively soft foundations.

A complete copy of this vibration standard is available from the ANSI website at the following: http://webstore.ansi.org/
The API 612 specification offers a quick way to gauge the severity of shaft vibration in displacement (mills-pk-pk).

Often used when commissioning new equipment for service.

The spec is simply given by applying the formula shown at right.

All you need to know is the machine rpm to obtain the spec.

\[
API \ Spec = \sqrt{\frac{12,000}{rpm}}
\]
The Dresser-Clark-Jackson chart like the API spec gives a quick, overall assessment of machine condition if the machine rpm is known.

Results are similar to those from the API spec.
REFERENCES, PART 2:

8) Eshleman, Ron, Basic Machinery Vibrations, Chapter 5, Machine Condition Evaluation, VI Press, IL, 1999

